```
Unsymmetrical Bending
```

The stress σ is given by

$$
\frac{P}{A}+\frac{I_{x y} x-I_{y y} y}{I_{x y}^{2}-I_{x x} I_{y y}} M_{x}+\frac{I_{x y} y-I_{x x} x}{I_{x y}^{2}-I_{x x} I_{y y}} M_{y}
$$

P is the axial force

A is the area of section
$I_{x x}$ is the second moment of area about the x-axis
$I_{y y}$ is the second moment of area about the y-axis
$I_{x y}$ is the product moment of area
M_{x} is the $B M$ about the x -axis
M_{y} is the BM about the y -axis

The location of the neutral axis is given by $\sigma=$

Note 1
$I_{x y}=0$ for a rectanglє

Note 2
Shift theorem
$I_{x y}=I_{x_{C} y_{C}}+A h k$

Qu. 1
A bar has the cross-section shown in Fig. 1 and is used as a simple bean of length 2 m . Determine the maximum tensile and compressive stresses ir the beam.
$x_{C}=28 \mathrm{~mm} \quad Y_{C}=35 \mathrm{~mm} \quad I_{X x}=1.330 \times 10^{6} \mathrm{~mm}^{4} \quad I_{Y y}=917 \times 10^{3} \mathrm{~mm}^{4}$
$I_{X Y}=30 \times 10^{3} \mathrm{~mm}^{4} \quad \alpha=0.215 \mathrm{rad} \quad \sigma_{A}=91.5 \mathrm{~N} / \mathrm{mm}^{2} \quad \sigma_{B}=-75.8 \mathrm{~N} / \mathrm{mm}^{2}$

Qu. 2
In Fig. 2 find the stress at point A.
$I_{X X}=I_{Y y}=11.596 \times 10^{6} \mathrm{~mm}^{4} \quad I_{X Y}=-6.79 \times 10^{6} \mathrm{~mm}^{4}$

$150 \times 150 \times 20 L$

Qu. 3
In Fig. 3 determine the largest value of M so that the allowable stress does not exceed $80 \mathrm{~N} / \mathrm{mm}^{2}$. All dimensions are in mm .
$\mathrm{M}=266.8 \mathrm{~N}-\mathrm{mm}$

