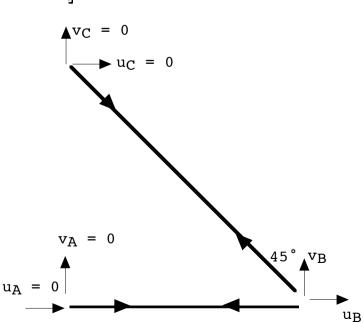
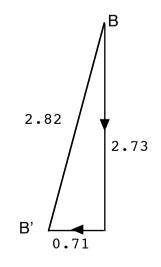
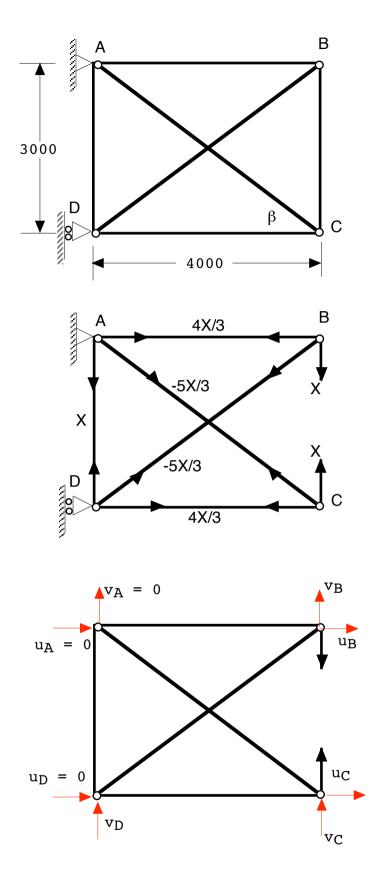

Pin-jointed Truss


Example #1




Geometry $L_{AB} = 3000$ mm $L_{BC} = 300\sqrt{2}$ mm Statics Joint equilibrium gives $T_{AB} = -10$ kN TBC = $1\sqrt{2}$ kN

 $\begin{array}{l} \underline{\text{Data}}\\ \alpha = 7 \ \text{x} \ 10^{-6} \ / ^{\circ}\text{C} \quad \Delta \text{T}_{\text{BC}} = +30 ^{\circ}\text{C}\\ \text{E} = 200 \text{kN} / \text{mm}^2 \quad \sin\beta = 0.6 \quad \cos\beta = 0.8 \end{array}$

 $\frac{\text{Geometry}}{\text{AC} = \text{BD} = 5000 \text{mm}}$

<u>Statics</u>

The frame is statically indeterminate: $i = 6 + 3 - 2 \ge 4 = 1$ i.e there is one redundant member. Cut member BC thereby releasing the internal forces X.

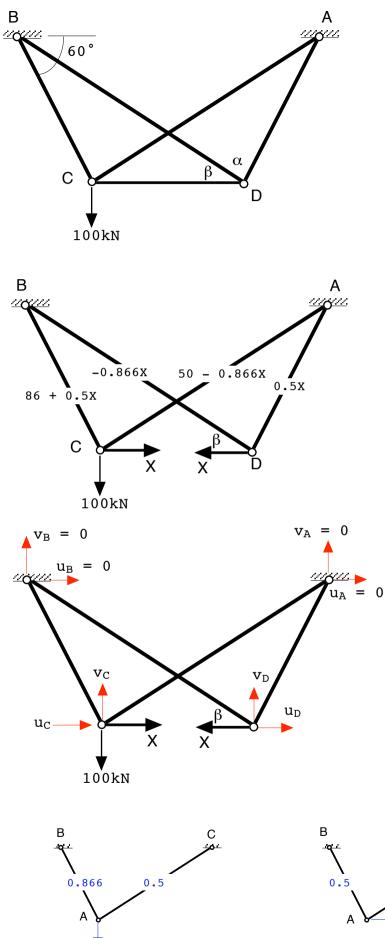
Joint equilibrium gives the forces as shown in the diagram.

Compatibility

Member AB: $u_B = 4X \times 10^{-4}/3$	[1
Member DC: $u_C = 4X \times 10^{-4}/3$	[2
Member AC:	
$u_{\rm C} \cos\beta - v_{\rm C} \sin\beta = -25X \times 10^{-4}/12$	[3]
Member AD: $-v_D = 3X \times 10^{-4}/4$	[4
Member DB:	
u _B cos β + v _B sin β - v _D sin β	
$= -25X \times 10^{-4}/12$	[5

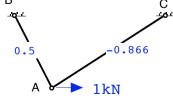
We get $v_C = 5.25X \times 10^{-4}$ [6 $v_B = -6X \times 10^{-4}$ [7

Extension BC = $-11.25X \times 10^{-4}$ Free expansion BC for 30° rise in temp = 7 x 10^{-4} x 3000 x 30 = 0.63mm


Net extension = $-11.25X \times 10^{-4} - 0.63$

$$= 3000 X / (EA)$$

We obtain


 $-11.25X \times 10^{-4} - 0.63 = 0.75X \times 10^{-4}$ which gives

 $\underline{X} = -525\underline{N}$

1kN

Data L_{BC} = L_{CD} = L_{DA} = 800mm $A_{BC} = A_{CD} = A_{DA} = 20 \text{mm}^2$ $A_{CA} = A_{DB} = 30 \text{mm}^2$ $E = 200 \text{kN}/\text{mm}^2$ Geometry $L_{CA} = L_{DB} = 1386$ mm $\alpha = 90^{\circ}$ $\beta = 30^{\circ}$ <u>Statics</u> The frame is statically indeterminate: $i = 5 + 4 - 2 \times 4 = 1$ i.e there is one redundant member. Cut member CD thereby releasing the internal forces \overline{X} . Joint equilibrium gives the forces as shown in the diagram. Compatibility Member CA $-0.866u_{\rm C} - 0.5v_{\rm C} =$ (50 - 0.866X)x 0.231 [1] Member CB $0.5u_{\rm C} - 0.866v_{\rm C} =$ $(86 + 0.5X) \times 0.200$ [2] Member BD $0.866u_D - 0.5v_D =$ -0.866X x 0.231 [3] Member AD $0.5u_{\rm D} + 0.866v_{\rm D} =$ $0.5X \times 0.200$ [4] We get on solving $u_{\rm C} = -1.41 + 0.223 X$ $u_{D} = -0.223X$ Ext. CD = -0.446 + 1.41= $X L_{CD} / (EA)_{CD}$ = 0.2XHence X = 2.2kNC

