CE21A/ME21A - 2004/05
 Problem sheet \#1

Qu. 1
Determine the horizontal component of the displacement at joint C in Fig.1. All members have a cross-sectional area of $2500 \mathrm{~mm}^{2}$ and $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$. [$u_{\mathrm{C}}=1.75 \mathrm{~mm}$ left and $\mathrm{v}_{\mathrm{C}}=$ 0.82 mm down]

Qu. 2
In Fig. 2 find the vertical displacement that occurs at joint B as a result of a temperature change of $+50^{\circ} \mathrm{F}$ in members $A D$ and $D C$. The coefficient of thermal expansion is $\alpha=6.5 \times 10^{-6}$ per ${ }^{\circ} \mathrm{F}$. [$\mathrm{V}_{\mathrm{B}}=0.0976$ in up]

Qu. 3
Find the displacement at joint C of the plane pin-jointed truss shown in Fig.3. Take $\mathrm{L} / \mathrm{A}=5000 \mathrm{~m}^{-1}$ and $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$ for each member. [$u_{\mathrm{C}}=15 \mathrm{~mm}$ to right and $\mathrm{vc}=10 \mathrm{~mm}$ down]

Qu. 4
A plane pin-jointed framework consists of six bars forming a rectangle ABCD 4000 mm by 3000 mm with two diagonals as shown in Fig. 4 below. The cross-sectional area of each bar is $200 \mathrm{~mm}^{2}$ and the frame is unstressed when the temperature of each member is the same. Due to local conditions the temperature of $B C$ is raised by $30^{\circ} \mathrm{C}$. Calculate the resulting forces in all the members if the coefficient of linear expansion α of the bars is $7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$. Take E equal to $200 \mathrm{kN} / \mathrm{mm}^{2}$.

Qu. 5
Calculate the loads in the members of the singly redundant pin-jointed framework shown in Fig.5. The members $A C$ and $B D$ are $30 \mathrm{~mm}^{2}$ in cross-section, all other members being $20 \mathrm{~mm}^{2}$. in cross-section. The members $A D, B C$ and $D C$ are each 800 mm long. Take E equal to $200 \mathrm{kN} / \mathrm{mm}^{2}$.

Fig. 5

