
                                                   Struts

Instability
So far we have been accustomed to dealing with stable equilibrium systems. However not all structural 
systems are stable. A simple example of a rigid vertical bar that is pinned at the base and restrained by 
a spring at the top,see Fig.1, will be used to illustrate this fact. The bar is assumed to be subjected to 
a vertical force P and the stiffness of the sping is k.
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Now let us consider the effect of a small angular displacement θ. The extension in the spring is Lθ and 
the force is kLθ. By taking moments about A we get

                            kL2θ > PLθ       ,       Stable equilibrium
                    
                            kL2θ < PLθ       ,       Unstable equilibrium

                            kL2θ = PLθ       ,       Neutral equilibrium 

The situation is similar to a marble on a smooth surface, see Fig.2.

The condition of neutral equilibrium (the system neither stable nor unstable) reduces to

                                  Lθ(P - kL) = 0

and so either θ = 0 or P = kL. The first solution is trivial. However the second solution yields the 
critical or buckling load of the system Pcr = kL for arbitrary small rotations θ. 
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Let us now examine the effect of a small angular displacement θ on the system consisting of two rigid bars 
shown in Fig.3. Taking moments about B we get in this case

                            kL2θ/8 = PLθ/2      ,       Neutral equilibrium

We obtain Pcr = kL/4. If we substitute the equivalent spring stiffness for the simply-supported beam of 

flexural rigidity EI shown in Fig.4, Pcr becomes  equal to 12EI/L2.

H = kLθ/4
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In both cases we observe that the citical load depends only on the spring stiffness. The strength of the 
material of which the bars are made does not play a part.

Euler load for pin-ended columns

When a compression member is axially loaded failure will occur in bending long before yielding occurs. 
This happens because of initial imperfections i.e. the member may not be perfectly straight and its 
mechanical properties may not be uniform; also it may be impossible to ensure that the load is centrally 
(without eccentricity) applied. Fig. 5 shows the behaviour of a typical axially loaded pin-ended member.
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Very stocky compression 
member or tension member

A very stocky member will fail by squashing. On the 
other hand a slender column will buckle sideways 
prematurely.

Let us now look at the behaviour of an ideal column. 
We make the following assumptions:

1. The ends are perfect pins with one of them free to          
move verically.

2. The material is perfectly straight and is of 
uniform cross-section with flexural rigidity equal to 
EI.

3. The material is linear elastic and no question of 
yielding arises under the applied load.

4. The lateral deflection, u, of the column is small 
in relation to its length.

The situaion is illustrated in Fig.6. For equilibrium 
we have

                       M + Pu = 0                [1]
Therefore     
              
                  EI     + Pu = 0                [2]

            or          + k2u = 0                [3]

where k2 = P/EI

Equation [3] has a solution   u = δ sin(kz)      [4]

Applying the boundary condition u = 0 @ z = L we get

            either δ = 0 or sin(kL) = 0          [5]

For a non-trivial solution sin(kL) = 0, whence

             P = n2π2EI/L2  ,  n = 1,2,3 ...     [6]
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The critical or Euler load (n=1) is                 PE = π2EI/L2                   

Values of n > 1 lead to higher buckling modes i.e. they yield higher values of P. In order to achieve 
these higher modes sufficiently stiff bracing must be introduced into the system. The first three buckling 
modes are given in Fig. 7.
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The average stress at elastic buckling is      σE = PE/A
                                                  
                                                  =            , I=Ar2 where r = radius of gyration

The ratio L/r is referred to as the slenderness ratio. Denote by σy the yield stress of the material then

                                             =                                                      [7]

Steel stanchions
Steel stanchions will in general have a major and a minor axis for bending. The Euler formula is applied 
with I being evaluated for the minor axis i.e. the stacnhion will buckle about its minor axis.
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For mild steel the yield stress is 250 N/mm2 and the modulus 
of elasticity is 205 N/mm2. Noting that  σy/ σE ≥ 1 then 
applying equation [7] we get

                          
                            ≥ 1

or                     ≥ 90

In other words ideal stanchions do not fail by buckling for 
slenderness ratios less than 90. These stanchions are 
described as short, otherwise they are termed slender.

Initial curvature
Let us assume that the column has an initial bow curvature 
given by uo = δo sin(πz/L). For equilibrium, see Fig.9 

                   M + P(u +uo) = 0                      [8]
Therefore                 
                    EI     + Pu = -Puo                   [9]

or                         + k2u = -k2uo                 [10]

The CF is of the form A sin(kz) + B cos(kz) and applying the 
b.c’s u = 0 @ z = 0 , L we get A = B = 0.

The PI is of the form δ sin(πz/L) and substituting in 
equation [10] we obtain

             -{EI (π/L)2 + P} + P δo = 0

or               =                =                    [11]
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Equation [11] may be re-arranged in the form

                                           =       +               which forms the basis of the Southwell 
(experimental) plot.
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Eccentrically loaded struts - Secant Formula
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Consider the eccentrically loaded column that is shown in Fig.11. 
For equilibrium we have

                     Mo + M + Pu = 0                         [12]
Therefore     
              
                     EI     + P(e + u) = 0                   [13]

            or           + k2v = 0                           [14]

where 
                     v = u + e  and  k2 = P/EI

The solution of equation [14] is of the form

                     u + e = B sin(kz) + C cos(kz)           [15]

Boundary conditions:

@ z = 0 , u = 0   and so C = e

@ z = L/2 , du/dz = 0

Now     = kB cos(kz) - kC sin(kz) and so C = e tan(kL/2)

d2u
dz2

d2v
dz2

du
dz

Substituting for A and B in equation [15] yields
                                          
                                          u = e[tan(kL/2) sin(kz) + cos(kz) - 1]                     [16]

                          @ z = L/2   ,   u = e[sec(kL/2) - 1]                                       [17]
       
Let A be the cross-sectional area of the column, yc the distance from the neutral axis to the extreme 
compression fibre, I the second moment of area about the neutral axis then

                                    I = A r2 = Z yc 

where     r is the radius of gyration and Z is the section modulus in compression. We may now write

Maximum compressive stress

=        +     sec(kL/2)

=      1 +     sec(kL/2)  

=      1 +      sec             the SECANT FORMULA for eccentrically loaded columns. 

Consider now the Maclaurin series for sec(x) :

sec(x) = 1 +   x2 +   x4 +   x6 + ........

Noting that   (kL)2 = π2         we get

sec(kL/2) - 1 =          1 + 1.028     + 1.032      +   ...

              
              
              =           1 -          approximately, and so the central deflection is equal to

                 where a =    e.
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Stresses in real stanchions - BS5950

BS5950 Structural use of steelwork in building uses the Perry-Robertson formula to determine the maximum 
compressive strength that a stanchion can sustain. It is assumed that the maximum deflection is of the 
form b/(1 - P/PE). Then the maximum compressive stress is

σmax = P/A + Pb/[Z(1 - P/PE)]   , where A = cross-sectional area and Z is the section modulus.

We may therefore write

                                                       σy = σ + η σ/(1 - σ/σE)
where    σ = P/A
         σE = PE/A
         h = b/Z

This equation may be written as

                           (σE - σ) (σy - σ) =  η σE σ

The smaller root of this equation gives the required value

                           
                             σE(1 + η) + σy       σE(1 + η) + σy 
                        σ =                  -                      -  σE σy
                                   2                    2 

η = 0.001 a (λ - λo) ≥ 0  is the Perry factor
a is the Robertson constant (see Appendix C of BS5950) 
λ is the slenderness ratio

λo = 0.2

Other end conditions

The Euler formula has been derived for a pin-ended column but it can be readily generalised for other end 
conditions by introducing the concept of an effective length. The effective length Le is related to the 

the actual length L by Le = αL. The critical load is now PE = π2EI/(α2L2). The effective length for 
various end conditions is given in Fig.12 below
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Principal Axes

Denote by x- and y- a pair of Cartesian axes. Let u- and v- denote another such pair, see Fig.13. The co-
ordinates of point P are related to each other in the following way:                       

u =  cosθ x + sinθ y                                    
v = -sinθ x + cosθ y

The second moments of area of the cross-section shown 
in the figure are:

Ix =  y2 dA     ,    Iy =  x2 dA 

The product moment of area is 

Ixy =  xy dA 
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These quantities may be written w.r.t the u-, v-axes as follows:

Iu =  v2 dA =    (-sinθ x + cosθ y)2 dA =  cos2θ Ix + sin2θ Iy - 2sinθ cosθ Ixy                        [A1]

Iv =  u2 dA =    (cosθ x + sinθ y)2 dA =  sin2θ Ix + cos2θ Iy + 2sinθ cosθ Ixy                         [A2]

Iuv =  uv dA =   (-sinθ x + cosθ y)(cosθ x + sinθ y) dA   

             =   sinθ cosθ Ix - sinθ cosθ Iy + (cos2θ - sin2θ) Ixy                                   

             =   sin2θ (Ix - Iy) + cos2θ Ixy                                                         [A3]

For Iu to be a minimum or maximum then dIu/dθ = 0. Hence by differentiating [A1] we get

                                            Iuv = 0     for principal axes i.e minor and major axes.

Equation [A3] gives                    tan2θ =                                                      [A4]     
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