
M is the bending moment and
F is the shear force at $X-X$

Let σ be the normal bending stress then $P=\int \sigma A d A \quad$ where $\sigma=M y / I$.
I is the second moment of area of the beam about the neutral axis.
Therefore $P=\int M y I A d A \quad=\quad M A \bar{Y} / I$ where A is the hatched area above.
Longitudinal equilibrium gives: $\delta P=\tau(t \delta x)$

Therefore $\tau t=\mathrm{dPdx}=\mathrm{FA} \bar{y} / I$ or

$$
\tau=F A \bar{y} I t \quad \text { provided that the beam is uniform. }
$$

I. Thick-walled beams

Qu. 1
The channel section shown in Fig. 1 is simmply-supported over a span of 5 m and carries a UDL of intensity $15 \mathrm{kN} / \mathrm{m}$ over its entire length. Sketch the shear stress distribution diagram at the point of maximum shearing force, and give important values. Determine the ratio of maximum shear stress to average shear stress.

Answer. $\quad 3,9.2,9.3 \mathrm{~N} / \mathrm{mm}^{2} ; 2.42$

Qu. 2
Fig. 2 shows the cross-section of a beam that carries a shear force of 20 kN . Determine the shear stress distribution.

Answer. $\quad 21.7,5.2,5.23 \mathrm{~N} / \mathrm{mm}^{2} ; 2.42$

Qu. 3
The cross-section of a beam is an isoceles triangle of base B and height H, the base being arranged in a horizontal plane. Find the shear stress at the neutral axis due to a shear force Q acting on the crosssection and express it in terms of the average shear stress.

Answer. $8 \mathrm{Q} /(3 \mathrm{BH}), 4 \tau_{\mathrm{avg}} / 3$
II. Thin-walled sections

Qu. 4
A beam having the cross-section shown in Fig. 3 is made of metal having constant wall thickness of 1.3 mm . Throught what point must the applied vertical load pass in order that there shall be no twisting of the section? Sketch the shear stress distribution.

Qu. 5
Determine the position of the shear centre, e, of the beams shown in Figs.4-6

Case 1

Case 3

$$
\tau=\frac{3398.9-\mathrm{y}^{2}}{28.645}
$$

$A_{1}=2 x_{1}$
$\mathrm{f}_{1}=1.034 \mathrm{x}_{1} \mathrm{~N} / \mathrm{mm}$

Case 2

$$
\begin{aligned}
& \text { Calculate the following: } \\
& \text { 1. } \mathrm{A}=520 \mathrm{~mm}^{2} \\
& \text { 2. } \mathrm{y}=50 \mathrm{~mm} \\
& \text { 3. } \mathrm{I}_{\mathrm{NA}}=966.7 \times 10^{3} \mathrm{~mm}^{4} \\
& \text { Use } \mathrm{f}=\frac{\mathrm{FA} \overline{\mathrm{y}}}{\mathrm{I}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{A}_{2}=160+2\left(50-\mathrm{x}_{2}\right) \\
& \mathrm{y}=50 \mathrm{y}=\left(50+\mathrm{x}_{2}\right) / 2 \\
& \mathrm{f}_{2}=\frac{10000\left(8000+50^{2}-\mathrm{x}_{2}^{2}\right)}{966.7 \mathrm{x} \mathrm{10}^{3}} \\
&=82.8+1.034\left(50^{2}-\mathrm{x}_{2}^{2}\right) / 100
\end{aligned}
$$

