
∩∩∩∩∩∩∩∩∩∩∩∩∩∩∩∩∩∩A B C D

 3m  3m  3m 

50kN
10kN/m

60kN-m

I =          60                     50                  40     x 106 mm4          

Continuous Beams - Flexibility Method         

Qu.1

Sketch the BM diagram for the beam shown in Fig.1. Take E = 200kN/mm2.         

Qu.2

Sketch the BM diagram for the beam shown in Fig.2. Take EI = constant.         
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Continuous Beams - Flexibility Method         

Qu.3

Sketch the BM diagram for the beam shown in Fig.3. Also calculate the 
support reactions. Take EI const. [RA = -29.9 , RB = 236.8, RC = 381.1kN]        

Qu.4

Sketch the BM diagram for the beam shown in Fig.4. Support B undergoes a 
settlement of 15mm. Take E = 200kN/mm2 and I = 1 x 10-4m4.         
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                 End rotations of simply supported beams  
      
                   Span = L    Flexural rigidity = EI
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              Flexibility method applied to continuous beams 
      

Example  Two-span continuous beam with the flexural rigidity EI = constant

Using statics

Res. vertically:       RA + RB + RC = P + Q                              (1)

Taking mom. about C:   RA x (LAB + LBC) + RB x LBC = P x XC + Q x YC       (2)

The three reactions are the unknowns but only two equations are available. 
Therefore the problem is statically indeterminate. We must use compatibility 
of displacements to generate an additional equation in order to complete the 
solution.

One procedure for doing this is illustrated in the figures below:
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Step 1    Remove prop and calculate the deflection ΔB
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Step 2    Introduce unit force at B and calculate δB

For compatibility      RB = ΔB / δB                                            (3)

We use these three equations to solve for RA, RB and RC respectively.

The bending moment at B  is    MB = RA x LAB - P x XB                     (4)

RC
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                         Bending Moment Diagram

The major disadvantage of this method arises when EI varies from span to span. 
The deflections cannot be calculated from standard tables which assume that 
the flexural rigidity EI is constant.

The free-body diagram for the individual spans are given below:

A powerful method that does not suffer from this defect is now described. It 
uses displacement compatibility and leads to the Three Moment Theorem. The 
method breaks a continuous beam into a series of simply supported spans. The 
slopes are therefore discontinuous over the supports. Rotations are then 
introduced via the reactant moments to ‘heal the cuts’.
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Three Moment Theorem

Consider a continuous beam consisting of N spans.
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Stage A : End rotations due to applied loads
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Stage A : End rotations due to reactant moments

In order to restore continuity at joint J,

                         φJ = θJI - α = β - θJK

(a) (b) (i) (j)
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Flexibility Coefficients: End rotations due to unit couples

Making use of the flexibility coef’ts shown above we may write the 
compatibility condition as follows:

           θJI - MI fi12 - MJ fi22 = MJ fi11 - MK fi21 - θJK 
or

         MI fi12 + MJ (fi11 + fi22) + MK fi21 =  θJI + θJK 

This is the so-called Three Moment Theorem (due to Clapeyron).

Settlement of supports

The theorem can be easily extended to deal with settlement of supports. Let ΔJ 
be the settlement of support J. The rotations on each side of support J due to 
the differential settlement are (ΔJ - ΔI)/LIJ and (ΔJ - ΔK)/LJK respectively. 
We get

   MI fi12 + MJ (fi11 + fi22) + MK fi21 =  (θJI - (ΔJ - ΔI)/LIJ) + 

                                                      (θJK - (ΔJ - ΔK)/LJK)

Fixed end (zero rotation)

A fixed end, A in the figure above, does not rotate. The rotation θAB must 
therefore be balanced by the reactant rotations. We have

                       MA fa11 + MB fa21 = θAB - (ΔA - ΔB)/LAB
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